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Mathematical analysis has shown that invariant kinetic parameters (IKP) correspond to the 
real kinetic curve even in the case when the equation prescribing this curve is not used for the- 
calculation of parameters. It has been proved that IKP values coincide with those obtained for 
isothermal conditions. The theory is verified by calculations using model experimental data. The 
IKP stability to random experimental errors is studied. 

References [1, 2] deal with the method of calculating effective values of kinetic 
parameters (activation energy and pre-exponential factor) of a solid phase process 
by data of several non-isothermal tests at various heating rates. It is characteristic of 
these parameters that the parameters so calculated are invariant with respect both 
to the actual form of the formal model of the process (i.e. their calculation does not 
require the knowledge of a particular form of the model) and to the heating rate. In 
both cases the existence of the invariance resulted in such advantages as 
unnecessary discrimination of formal models of the process in case of ambiguous 
solution of the inverse kinetic problem and coincidence of the IKP values with the 
effective values of Arrhenius parameters for corresponding isothermal conditions. 
These advantages were found by analysing experimental data for several particular 
processes [1-3]. In Ref. [4] the relationship between the IKP technique and 
complementarity methodology providing explanation to the invariance of the 
obtained parameters is dwelt upon in detail. 
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Mathematical IKP a n a l y s i s  

The temperature dependence of the process rate is traditionally described by the 
Arrhenius equation [5] having the following form fornonisothermal experimental 
conditions: 

dT - fl exp - f (~)  (1) 

where a is the degree of conversion, T is the temperature, R is the universal gas 
constant, fl is the heating rate, f (a )  is the formal model of process, A and E are the 
kinetic parameters. In formal kinetic analysis of solid-phase processes, some set of 
formal models is usually used which, in accordance with (1), comply with numerous 
values of A and E related by the apparent compensation effect: 

In A = a E +  b (2) 

where parameters a and b are consistent with isoparametric values of temperature 
(f ' )  and rate coostant (K) [6] 

f _  1 l n K = b  
a R '  

Changes of the heating rate cause changes of the parameters in Eq. (2) and, 
correspondingly, variations ofisoparametric temperature and rate constant values. 
The relationship between them is, in its sense, of the Arrhenius form provided that 
the process is independent of the heating rate: 

In R = In ~ - -~E (3 )  
R T  

where .4 and/~ are the invariant kinetic parameters. 
Let us present (1) in a logarithmic form 

E 
In K ( T )  = In A - - -  (4 )  

R T  

where 

l n K ( T ) = l n  d--T f ) 

The existence of the apparent compensation effect (2) suggests the existence of a 
common intersection point for Arrhenius relations of type (4) for different formal 
models f~(~) (Fig. 1). The intersection of these relations is referred to as 
isoparametric. It is evident that for an isoparametric point the following condition 
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Fig. 1 Apparent compensation effect as the intersection of Arrhenius relations 

holds: 

In K~(f') ~ const = In K(T)  (5) 

where In K(T)  is the abscissa of the isoparametric point (Fig. 1), In K~(f') is the 
abscissa of the rate constant logarithm for different formal models f~(at) at 
isoparametric temperature f'. 

Let there exist some complex process strictly obeying the kinetic model f~ for 
a certain ~t range and having effective Arrhenius parameters E ~ and A ~ Let us 
assume further that the mechanism of this process and its parameters are constant 
both during the transition from isothermal to nonisothermal conditions and within 
some temperature range (for isothermal conditions) as well as heating rates (for 
nonisothermal conditions). We shall show that the IKP coincide: 

a) with effective parameters A o and E ~ of a real process even if the process model 
f~ is not a member of models set f~(~t) used for the formal-kinetic analysis; 

b) with isothermal values of kinetic parameters. 
a) Let f~ be disregarded in fi(0t). Assume, that the set fi(~t) is sufficiently 

representative, i.e. it considers all main types of solid-phase processes. Then, it can 
reasonably be assumed that f~ is not linearly independent of  f~(~t), or 

~ t 2  

S f~ "fi(a)dct # 0 (6) 

Taking into account the connection of the rate constant and formal model of the 
process, (6) yields: 

T2 
~, K~ K~(T) dT # 0 (7) 

where K~ is the effective rate constant consistent with the real process (fo(a)), 
7"1 and T 2 the temperatures corresponding to ~t t and a2 range of  a values where the 
real process strictly obeys the model f~ It follows in a straightforward way from 
(7) that we have: 

K~ = ~ C~K~(T) (8) 
"F 

J. Thermal Anal. 34, 1988 



612 VYAZOVKIN et al.: COMPLEMENTARITY METHODOLOGY 

For isoparametric temperature f" (8) with respect to Eq. (5) may be written as 
follo'~:s: 

K~ ~ K ( f ) ~ .  G (9) 

Introducing the normalization condition 

~C~ = 1 

where C~ characterizes partial comribution of the/-constant of the rate, gives 

K~ ~. K(T) (i0) 

So, it follows that the Arrhenius relationship in Eq. (4) for the formal model f~ 
which strictly corresponds to the real process, always passes through the 
isoparametric point with the precision given By Eq. (5). As Eq. (10) can be extended 
to any heating rate/~, and the process mechanismf~ and its parameters A ~ E ~ 
are stipulated to be constant for some range offl, then the following statement holds 
for this range. All the isoparametric points obtained for the range of heating rates 
and decomposition degrees, for which' the process mechanism and kinetic 
parameters remain constant, lie on the Arrhenius relationship characterized by 
kinetic parameters A ~ and E ~ So, the IKP obtained from ~he Arrhenius 
relationship which passes through isoparametric points and, corresponds to 
different heating rates with the precision given by Eq. (5) coincide with the effective 
values of kinetic parameters A ~ E ~ 

b) Assume that the isothermal process proceeds at isoparametric temper- 
atures in accordance with the formal model f~ and parameters E ~ A ~ i.e. the 
Arrhenius relationship of the following type holds: 

E o 
InK = lnA ~  ~ (11) 

On the other hand, with regard for (10), for nonisotherrnal process equality 

In K(T) = In A -  RI" (12) 

can be written, or taking into account the equation proved above in (a) 
E o 

In K(~) ~ In A ~  R~ (13) 

is valid for the nonisothcrmal process. Comparison of (13) and (11) yields 

In K(2r) ~ In K (14) 

So, the Arrhenius relationship to determine IKP values coincides with similar 
relationships for the isothermal conditions. In other words, the isoparametric value 
of logarithm of the effective rate constant coincides with the value obtained from an 
isothermal experiment at isoparametric temperature. 

J. Thermal Anal. 34, 1.~ 



V Y A Z O V K I N  et  al . :  C O M P L E M E N T A R I T Y  M E T H O D O L O G Y  6 1 3  

Modelling nonisothermal kinetic curves 

In order to support the above theoretical considerations, five kinetic curves 
vs. T for five heating rates (1.25, 2.5, 5.0, 10.0 and 20.0 deg.min -~) were 

modelled in accordance with the equation 

T 

(15)  

0 

where function G is the inverse of the integral form of the kinetic function g(~t), i.e. 
c ( g ( ~ ) )  = ~. 

The integral in (15) is replaced by the approximation suggested in [7] 

T 

exp - ~ d T ~  R x x4+20x3+120x2+240x+120 
o 

E 
where x -  

RT" 
It was assumed that the model of the process obeys the following kinetic 

equation: 
g(~t) = c113(1 - (1 - at)l/3)] + c2[1.5(1 - (1 - 001/3) 2] (16) 

which is a linear combination of the contracting sphere and Jander equations [8]. 
The choice of a linear combination is due to the fact that [16] defined complex 
kinetics and the kinetic curves simulated in conformity with it will be consistent 
with none of the elementary formal models used for kinetic analysis (cf. [8, 9]). It 
seems that in this case, discrimination of formal process models to choose the 
"best" one becomes meaningless at all, hence, hinders the determination of kinetic 
parameters consistent with the real kinetic curve. 

Comparison of the traditional and nontraditional methodologies 
for solution of  the inverse kinetic problem 

Using the kinetic curves modelled in accordance with (15) and (16) and plotting 
E = 30 kcal.mo1-1, ,4 = 10 is min -1 and three different combinations of coeffi- 
cients C1 and C2 in(16) (0.3, 0.7; 0.5, 0.5; 0.7, 0.3), we compaxed the results of 
calculations using traditional and nontraditional [4] methodologies for solution of 
the inverse kinetic problem. We used the IKP method with the above algorithm as a 
nontraditional approach. The traditional methodology will be represented by the 
widely used Coats-Redfern method [10] with subsequent discrimination of formal 
models in the values of the residual sums of squares. 
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In IKP calculations in conformity with the above algorithm, Eq. (1) was replaced 
by the Coats-Redfern integral anamorphosis [10]. The IKP values obtained for 
three combinations of  coefficients C 1 and C 2 were E = 29.91, log A = 14.96 (0.3, 
0.7); E = 29.93, logA = 14.84 (0.5, 0.5); E = 29.90, logA = 14.72 (0.7, 0.3). 
Good agreement of  invariant and model values of  kinetic parameters support the 
above statement on the coincidence of  invariant kinetic parameters with effective 
ones described by the real kinetic curve. 

The calculations by the Coats-Redfern method were performed as follows. For 
each formal model (Table 1) presented in Eq. (17) 

AR E 
In (g(ct)~ = In (17) 

the values of  A and E were fitted by the least squares method. As an example, Table 
I gives the values of  E, log A and residual sum o f  squares S 2 for the combination of  
coefficients C 1 = 0.5, C 2 = 0.5 and heating rate fl = 2.5 deg" min-1 .  The Fischer 
criterion was used for discrimination [11]. Formal  models which do not satisfy the 
condition 

S~ ~<F (18) 
2 

Stain 

Table 1 Results of-kinetic parameters calculation by means of  Coats-Redfern method 

N Formal model E, kcal/mol Log A S 2 

1 "1/4 4.31 0.74 0.00403 
2 "1]3 6.28 1.93 0.00708 

3 ~,l/z 10.23 4.20 0.01572 

4 " 22.06 10.71 0.06211 
5 "at2 33.89 17.08 0.13918 

6 [ -  In (1 - ")]1/" 6.56 2.17 0.00025 

7 [ -  In (1 - ")]t/3 9.28 3.77 0.00047 

8 [ -  In (1 - ")]t/2 14.72 6.86 0.00110 
9 [ -  In (1 - ")]t/1.s 20.16 9.89 0.00200 

10 1 - (t - ")112 26.11 12.75 0.01455 

11 "1 - (1 - " ) 1 / 3  27.65 13.45 0.00428 

12 - In (1 - ") 31.04 15.86 0.00460 

13 (I _ ' ) - 1 / 2 _  1 36.87 18.88 0.10136 

14 (1 - " ) -  t _ 1 43.58 22.97 0.39570 
15 ((1 + ,,)1/3_ 1)2 41.30 19.89 0.29037 

16 "2 45.72 23.38 0.24691 

17 (1 - ")  in (1 - ") 50.65 25.88 0.12640 

18 1 -- 2 " -  (1 - ")2/a 52.71 26.39 0.07976 

19 (1 - (1 - ")t/a)2 56.92 28.76 0.01670 
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were discriminated (S 2 is the residual sum of squares corresponding to the i-th 
kinetic function; $2~, the minimum residual sum of squares among all S 2 ; i is the 
serial number of the formal model; F the tabulated Fischer criterion). 

Thus, for the case C~ = 0.5, C2 = 0.5 with respect to condition (18), the 
Avrami-Erofeev model (Am) with m = 4 and 3 (NN 7, 8 in Table 1) are the "best" 
one for all the heating rates. For these models, irrespective of the heating rate, E and 
A are equal to 6.6 kcal. mol- t 102.2 min- t (A4) and 9.3 kcal. tool- x, 103.a. min- ~ 
(An), respectively. The advantage of the IKP method which represents for this 
instant the nontraditional methodology applying the complementarity principle to 
solve the inverse kinetic problem is evident. 

It is also worth to note that the suggestion made in part I [12] to use the 
Avrami-Erofeev model as a generalized description has restrictions as seen from 
the above example. This means that the Avrami-Erofeev model cannot always be 
used as an approximation [12] to the nontraditional methodology of solving the 
inverse kinetic problem. 

Relationship between kinetic parameters and parameters obtained 

in isothermal experiment 

It has been proved above that the isoparametric value of the rate constant 
coincided with its isothermal value at the isoparametric temperature (see Eq. (14)). 
To verify this statement, isoparametric values of T and In K(T) were calculated by 
(2) and compared with the logarithm of the rate constant of the isothermal process 
characterized by the values of kinetic parameters consistent with model ones 
E = 30 kcal. mol- 1, A = 10 is min- 1. So, the dependence of the logarithm of the 
rate constant of the isothermal process on isoparametric temperature is 

30000 
K =  15- RT~ (19) 

The results of the calculation for Ca = 0.5, C 2 = 0.5 are cited in Table 2. The 
syStematic nature of the ln.~(T) deviations from InK may, presumably, be 
explained by the systematic error introduced by the approximate Coats-Redfern 
equation replacing Eq. (l) in IKP calculations. Such errors, however, cause only 
insignificant deviations of preexponent factor in IKP estimation. 

Influence of  random errors on kinetic parameters obtained 
by the IKP method 

Below some results are presented which verify the stability of kinetic parameters 
obtained by the IKP procedure against disturbances introduced by random errors 
in temperature T and decomposition degree ~t. Random error distribution in T and 
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Table 2 C o m p a r a t i v e  values  of  i s o p a r a m e t r i c  and  i so thermal  ra te  cons tan t s  

Hea t ing  rate,  I sopa rame t r i c  values,  
L n K ,  Eq. (19) Ln  K - L n / ( ( T )  

deg /min  T, K L n / ( ( T )  

1.25 398.3 - 3.64 - 3.36 0.28 

2.50 405.4 - 2.98 - 2.71 0.27 

5.00 412.6 - 2.32 - 2.05 0.27 

10.00 420.2 - 1.67 - 1.40 0.27 

20.00 428.0 - 1.02 - 0.74 0.28 

~t was assumed to be normal. Temperature values with an experimental error were 
estimated according to 

= + a T x j  (20) 

where T o is the model temperature value, a T is the rms deviation, X i is the random 
number varying in Gaussian distribution. 

Similarly, the values of  the decomposition degree with an experimental error, 
were found as 

~j = ctj+a~X~ (21) 

In this case 0t ~ is the model value of  the degree of  decomposition. The rms 
temperature deviation aT and rms decomposition degree deviation~ a= were chosen 
to conform with the recorder error of  the derivatograph. For the 500 mg sample in 
the temperature range from 300 to 600 K the temperature error did not exceed IK, 

in the degree of  decomposition is no more than 0.001. Taking account the fact that 
the values of  normally distributed random numbers have a dispersion a = 1, the 
rms deviations in temperature and degree of  decomposition were chosen to be 

a r  = IK,  a~ = 0.001. 
The values of  normally distributed random numbers Xj were obtained using the 

generator random numbers Ri uniformly distributea within the interval (0.1) [13] 

R i - -  
i = 1  2 

Xj - (22) 

As noted in Ref. [13], at n =  12 Eq. (22) provides satisfactory values of  the 
Gaussian distribution. We have applied the greatest value n = 48, because following 
the central limit theorem [11], distribution (22) asymptotically approaches the 

normal one with increasing n. 
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Using the IKP method, the values of  kinetic parameters were obtained by the 
model with scattering data for three different combinations of  coefficients C~ and 
C2 in linear combination (16): 

logA = 15.08; E = 30.41 kcal.mo1-1 

(C1 = 0.7, C2 = 0.3) 

logA = 14.50; E = 29.31 kcal.mo1-1 

(C1 = 0.5, C2 = 0.5) 

logA = 15.76; E = 31.68 kcal-mo1-1 

(C 1 = 0.3, C2 = 0.7) 

So, the disturbances due to simulated errors exert but a slight effect on the values 
of  invariant parameters. However, on interpreting real kinetic curves the errors in 
kinetic parameters often turn out to be greater which, probably, is resulted in by 
some changes in the behaviour of  the process with changing heating rate. 

Conclusions 

Mathematical analysis and modelling of  the IKP method show: 
(i) the IKP method gives access to the effective values of  kinetic parameters of  a 

real solid phase process without using its formal model in an explicit form; 
(ii) the IKP isoparametric values of  the logarithm of the rate constant used in the 

IKP method coincide within a small systematic error with the corresponding values 
of  the isothermal process at the isoparametric temperature. Systematic errors seem 
to be resulted in by the approximate nature of  the Coats-Redfern equation used in 
the IKP calculations; 

(iii) the IKP method shows high stability towards experimental errors in T and ~t 
values. 

These results make the IKP method suitable for the solution of  problems 
requiring reliable estimation of  effective kinetic parameters values by data on non- 
isothermal experiments. 
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Zusammenfassung - -  Im Ergebnis einer rnathematischen Untersuchung wurde festgestellt, dab 
nonvariante kinetische Parameter (IKP) der rea~en kinetisehen Kurve sogar fiir den Fall enlsprechen, 
dab die Funktion dieser Kurve nicht zur Parameterschfitzung verwendet wurde. Es wurde gezeigt, dab 
die IKP-Werte mit denen unter isothermen Bedingungen erhaltenen iibereinstimmen. Die theoretischen 
Betrachtungen wurden durch Berechnungen mit experimenteUen ModeUdaten iiberpriift. AuBerdem 
wurde die Abh/ingigkeit der IKP gegeniiber experimentellen Randomfehlern untersucht, 

~e310Me - -  l-[yTeM MaTeMaTtlqeCKOFO aHa.,qli3a noKa3aHo, qTO BHBapHaHTHble KttHeTHqeCKae 
napaMeTpbt (HKII) coo'reeTcreyloT peaYlbHo~ ~nnern,tecKofi Kpt4so~ ~a)re s TOM c~yqae, goraa ~a~i~ 
pacqera napaMeTpoB He Hcno.ab30sano ypasnenne, 3aJia~oIttee ,aannym KpnBylo. ,~oKa3ano, qXO 
3Haqenn~ HKI-I coBna~amr co 3HaqeHrl~MR, no~yqenmaMn B n30TepM~qec~Hx yC.~OBHax. 
Teopemnecxne nozo~enn~ noarsep~r, aenst pac,~exaMn na Moaeabnb~x 3KcnepnMenxa.abn~ax aannblx. 
HecaeaoBana yerofiqnsocxl, HKII ~ cayqafim, lM omn6xaM. 
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